Homeland CBR Defense: Technical Challenges of the 87% Solution

Presenter: William Blewett Battelle Edgewood Office

The 87% Solution

To make buildings in which we live, work, and spend leisure time highly protective against airborne hazards

The Goal

To make buildings highly protective against airborne hazards at affordable cost

The Covert Attack

Strategies of CBR Defense

- ¬ Prevention
- □ Protection

Air Filtration

Controlling Air Exchange

Mitigation

A Building as a Protective System

A building is a system of barriers, filters, and fans.

- Its protection against airborne hazards is governed by
 - The efficiency of filtration
 - The volume of unfiltered air exchange induced by fans, buoyancy, and wind.

Buildings and their HVAC systems are not suited for high levels of protection

- □ HVAC-system filters have low efficiency, high bypass.
- HVAC systems are configured to draw outside air.

Typical building envelopes are not tight enough for pressurization with normal minimum volumes of outside air.

For high levels of protection, pressurization is essential

You can switch fans on and off

You can't turn off the wind or buoyancy pressures.

Two approaches for applying air filtration

- External filtration with pressurization (zero unfiltered air exchange) - high PFs
- Internal filtration (recirculated air) low PFs because no control of unfiltered air exchange.

What is the criterion for "highly protective"?

We have a protection-factor criterion for the battlefield.

It is 6,667, based on threshold effects of sarin and outdoor doses delivered by Soviet chemical weapons

We have no collective-protection criterion for homeland defense.

Based threat agent toxicity, it should be greater than 10,000.

What level of protection do buildings provide?

- Buildings normally have little or no filtration for CBR agents and provide very low protection factors PF roughly 1 to 5
- There are very few highly protective buildings, and their protective systems are very expensive --PF roughly 10,000 to 100,000.
- For transient hazards with forewarning, air-exchange rate control makes a building protective --PF roughly 2 to 100

Controlling Air Exchange as a Protective Action

Sheltering in place requires a well-timed altering of the air-exchange rate -- twice:

- Decreasing the building's air exchange rate before arrival of the plume.
- Increasing the air exchange rate immediately after passage of the plume.

Without making these changes, a building provides no dose reduction

Standoff Delivery of Toxic Industrial Chemicals

Release	<u>Chemical</u>	Quantity	<u>Deaths</u>
Bhopal, 1984	MIC	40 tons	3,000
Ypres, 1915 *line source 4 n	Chlorine niles wide	160 tons*	5,000
10,000-gal tanker	Chlorine	50 tons	

High-level protection against a terrorist attack requires

■ Continuous, high-efficiency filtration

■ Pressurization

The cost of a highly protective system

Retrofit of Dormitory A (24,450 sq feet)

Cost of CP system installed: \$1.3 million (\$53/sq ft) Leakage rate at 50 Pa = 0.18 cfm/sq ft

Retrofit of Dormitory B (28,250 sq feet)

Cost of CP system installed: \$1,2 million (<u>\$42/sq ft</u>) Leakage rate at 50 Pa = 0.163 cfm/sq ft

New Construction, Dormitory C (61,500 sq feet)

Cost of CP system installed: \$2.0 million (<u>\$32/sq ft</u>) Leakage rate at 50 Pa = 0.17 to 0.2 cfm/sq ft

What we have, what we need

What we have today:

High-level protection at high cost, or Low-level protection at low cost

What we need:

High-level protection at low cost

What we need

High-efficiency filter systems with low initial, operating, and maintenance costs; the capability to filter all threat agents.

 Reconfiguration of buildings' systems -fans, filters, and barriers -- for economical pressurization.

The challenge in collective protection for homeland defense

To develop systems that yield high levels of protection in buildings at affordable cost